Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro.

نویسندگان

  • R J Vasquez
  • B Howell
  • A M Yvon
  • P Wadsworth
  • L Cassimeris
چکیده

Previous studies demonstrated that nanomolar concentrations of nocodazole can block cells in mitosis without net microtubule disassembly and resulted in the hypothesis that this block was due to a nocodazole-induced stabilization of microtubules. We tested this hypothesis by examining the effects of nanomolar concentrations of nocodazole on microtubule dynamic instability in interphase cells and in vitro with purified brain tubulin. Newt lung epithelial cell microtubules were visualized by video-enhanced differential interference contrast microscopy and cells were perfused with solutions of nocodazole ranging in concentration from 4 to 400 nM. Microtubules showed a loss of the two-state behavior typical of dynamic instability as evidenced by the addition of a third state where they exhibited little net change in length (a paused state). Nocodazole perfusion also resulted in slower elongation and shortening velocities, increased catastrophe, and an overall decrease in microtubule turnover. Experiments performed on BSC-1 cells that were microinjected with rhodamine-labeled tubulin, incubated in nocodazole for 1 h, and visualized by using low-light-level fluorescence microscopy showed similar results except that nocodazole-treated BSC-1 cells showed a decrease in catastrophe. To gain insight into possible mechanisms responsible for changes in dynamic instability, we examined the effects of 4 nM to 12 microM nocodazole on the assembly of purified tubulin from axoneme seeds. At both microtubule plus and minus ends, perfusion with nocodazole resulted in a dose-dependent decrease in elongation and shortening velocities, increase in pause duration and catastrophe frequency, and decrease in rescue frequency. These effects, which result in an overall decrease in microtubule turnover after nocodazole treatment, suggest that the mitotic block observed is due to a reduction in microtubule dynamic turnover. In addition, the in vitro results are similar to the effects of increasing concentrations of GDP-tubulin (TuD) subunits on microtubule assembly. Given that nocodazole increases tubulin GTPase activity, we propose that nocodazole acts by generating TuD subunits that then alter dynamic instability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different contributions of microtubule dynamics and transport to the growth of axons and collateral sprouts.

Axonal growth is believed to depend on microtubule transport and microtubule dynamic instability. We now report that the growth of axon collateral branches can occur independent of microtubule dynamic instability and can rely mostly on the transport of preassembled polymer. Raising embryonic sensory neurons in concentrations of either taxol or nocodazole (NOC) that largely inhibit microtubule d...

متن کامل

Dynamic properties of nucleated microtubules: GTP utilisation in the subcritical concentration regime.

Microtubule assembly kinetics have been studied quantitatively under solution conditions supporting microtubule dynamic instability. Purified GTP-tubulin (Tu-GTP) and covalently cross-linked short microtubule seeds (EGS-seeds; Koshland et al. (1988) Nature 331, 499) were used with and without biotinylation. Under sub-critical concentration conditions ([Tu-GTP] < 5.3 microM), significant microtu...

متن کامل

A role for microtubule dynamics in phagosome movement.

We have shown previously that intracellular phagosome movement requires microtubules. Here we provide evidence that within cells phagosomes display two different kinds of microtubule-based movements in approximately equal proportions. The first type occurs predominantly in the cell periphery, often shortly after the phagosome is formed, and at speeds below 0.1 microm/second. The second is faste...

متن کامل

Stepwise Reconstitution of Interphase Microtubule Dynamics in Permeabilized Cells and Comparison to Dynamic Mechanisms in Intact Cells

Microtubules in permeabilized cells are devoid of dynamic activity and are insensitive to depolymerizing drugs such as nocodazole. Using this model system we have established conditions for stepwise reconstitution of microtubule dynamics in permeabilized interphase cells when supplemented with various cell extracts. When permeabilized cells are supplemented with mammalian cell extracts in the p...

متن کامل

Presence of Antioxidant in in vitro Maturation Medium and its Effects on Glutathione Level, Spindle Area and Rate of in vitro Fertilization

Background: Effect of different doses of cysteamine on rate of in vitro maturation (IVM), in vitro fertilization (IVF) and glutathione (GSH) level was studied. Metaphase II (MII) spindle area was analyzed for quantification of shape and size of oocytes. Methods: Female mice were primed with 5 IU of pregnant mare’s stimulating gonadotrophin. Germinal vesicle (GV) oocytes were retrieved 48 hrs la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 8 6  شماره 

صفحات  -

تاریخ انتشار 1997